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Abstract
The dynamics of a single spin embedded in a tunnelling junction is studied.
Within a nonequilibrium Keldysh Green’s function technique, we derive a
quantum Langevin equation describing the spin dynamics. In the high
temperature limit, it reduces to a Bloch equation, for which the spin relaxation
rate, as determined by the temporal fluctuation, is linearly proportional to the
temperature. In the opposite limit, the relaxation rate depends on the applied
voltage, in contrast to the case of a spin in an equilibrium environment. We
also show that spin–flip transition processes during electron tunnelling convert
the applied electric field (i.e. voltage bias) into an effective magnetic field.
Consequently, the dynamics of the spin, otherwise precessing along the static
magnetic field, will have either a frequency shift proportional to the dc bias
or a magnetic resonance driven indirectly by an ac electric field at the Larmor
frequency ωL. An experiment to measure this effect is also proposed.

There is considerable experimental [1–3] and theoretical [4–10] interest in the coupling of a
single spin to transport electrons. These studies are helpful in understanding the mechanism
for the detection and manipulation of a single spin [11], a crucial element in spintronics and
spin-based quantum information processing. Experimentally, a modulation in the tunnelling
current has been observed by scanning tunnelling microscopy (STM) using a spin-unpolarized
electron beam [1–3]. This observation opens up the possibility of an alternative single-spin
detection technique. Theoretically, several explanations for current modulation have been
proposed, including spin–orbit coupling [5], the role of the current itself [7], and magnetic
scattering [8]. So far, an understanding of the mechanism for this phenomenon is still an open
issue [9, 10]. The measurement of a single spin by electron spin resonance was proposed in [4].
We note that the coupling between a single spin and a supercurrent in Josephson junctions has
also been studied recently [12, 13].

In earlier works involving normal conducting leads, the spin dynamics itself was treated
as an isolated system, and the back-action of the transport current on the spin dynamics has not
been considered. It is well known that the back action from conduction electrons is detrimental
to spin coherence. However, this is the only way to manipulate the spin electrically. In this
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paper, we concentrate on the dynamics of a single spin embedded in a normal tunnel junction.
A quantum Langevin equation is derived for the single-spin dynamics. In the high-temperature
limit, it reduces to a Bloch equation, for which the spin relaxation rate, as determined by the
temporal fluctuation, is linearly proportional to the temperature. In the opposite limit, the
relaxation rate depends on the applied voltage, in contrast to the case of a spin in an equilibrium
environment. More interestingly, we show that spin–flip transition processes during electron
tunnelling convert the applied electric field (i.e. bias voltage) into an effective magnetic field.
Consequently, the dynamics of the spin, otherwise precessing around the static magnetic field,
is tuned indirectly by an ac electric field at frequency ω0. This also has an implication that
magnetic resonance will occur at ω0 = ωL, where ωL is the Larmor frequency due to the
applied magnetic field. The signal at resonance can be picked up by magnetic resonance force
microscopy (MRFM).

The model system under consideration consists of two normal metallic leads coupled to
each other by a single spin S. In the presence of a magnetic field B, the spin precesses around
the field direction. The system Hamiltonian can be written as:

H = HL + HR + HS + HT . (1)

The first two terms are the Hamiltonians for electrons in the left and right leads,

HL(R) =
∑

k(p);σ
Ek(p)c

†
k(p),σ ck(p),σ (2)

where we have denoted the electron creation (annihilation) operators in the left (L) lead by
c†

kσ (ckσ ) and those in the right (R) lead by c†
pσ (cpσ ). The quantities k (p), σ are momentum

and spin indices, and Ek(p),σ are the single particle energies of the conduction electrons. The
Hamiltonian of a free spin in the presence of the magnetic field is given by:

HS = −gμBB · S, (3)

where g and μB are the gyromagnetic ratio and Bohr magneton of the conduction electron. The
two leads are weakly coupled via the tunnelling Hamiltonian:

HT =
∑

k,p;σ,σ ′
[Tσσ ′(k, p)c†

kσ cpσ ′ + H.c.], (4)

where the matrix elements Tσσ ′(k, p) transfer electrons through a magnetically active
tunnelling barrier. When a spin is embedded in the tunnelling barrier, the tunnelling matrix
becomes a spin operator [6, 8]:

T̂σσ ′ = T0δσ,σ ′ + +T1S ·σ σσ ′ + T2σ
x
σσ ′ . (5)

Here the first term describes spin-independent tunnelling. The second term describes the
process originating from the direct exchange coupling J of the conduction electron to the
localized spin S. Typically, the ratio between T1 and T0, i.e. T1/T0, scales as J/�, where
� is a spin-independent tunnelling barrier; see [14] for more details. For the spin of localized
electron, it is implied that the localized level is far below the Fermi surface of the conduction
electrons in both electrodes, that is, εd � EF, while the Coulomb repulsion U is so large that
εd + U � EF. Therefore, the voltage bias should not exceed this energy level difference. We
also take, for convenience, the respective amplitudes to be momentum independent (although
it is not required). We further allow a weak external magnetic field B ∼ 102–104 G, which is
applied along the z-direction in the z–x plane perpendicular to the electron tunnelling direction
(y-axis). The last term describes the spin–flip transition in the magnetically active tunnelling
barrier between the leads.

When a time-dependent voltage bias is applied across the tunnelling barrier, such that
V (t) = Vdc + Vac cos(ω0t), where Vdc and Vac are the dc and ac components, and ω0 is
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the frequency of the ac field, a dipole will be formed around the barrier region through the
accumulation or depletion of electron charge. This process results in the time dependence
of single-particle energies, Ek = εk + WL (t) and E p = εp + WR(t), with the constraint
WL (t) − WR(t) = eVac cos(ω0t). However, the occupation of each state in the respective
contact remains unchanged and is determined by the distribution established before the time
dependence is turned on. Therefore, the chemical potentials on the left μL lead and on the
right lead μR differ by the dc component of the applied voltage bias, μL − μR = eVdc. The
tunnelling junction with the spin then has two time scales: the Larmor precession frequency of
the spin ωL = gμB B and the characteristic frequency ω0 of the ac field.

By performing a gauge transformation,

Û = e−i
∫ t

t0
(μL +WL (t ′))N̂L dt ′

e−i
∫ t

t0
(μR+WR (t ′))N̂R dt ′

, (6)

with N̂L(R) = ∑
k(p),σ c†

k(p)σ ck(p)σ , we obtain a new Hamiltonian: K = KL + K R + KS + KT ,

where KL(R) = ∑
k(p),σ ξk(p)c

†
k(p)σ ck(p)σ , KS = HS and

KT =
∑

kp,σσ ′
(T̂σσ ′eiφ(t)c†

kσ cpσ ′ + H.c.),

with φ(t) = ∫ t
t0
[eVdc + eVac cos(ω0t ′)] dt ′. Note that ξk(p) = εk(p) − μL(R), the energy being

measured with respect to the different chemical potential on each side of the tunnel junction.
We now derive the effective action via the Keldysh technique. If all external fields

are the same on both forward and backward branches of the Keldysh contour (C) then
Z = Tr TC exp[−i

∮
C dt KT (t)] = 1, where the trace is over both the fermionic bath and the

local spin degrees of freedom. We first take a partial trace in Z over the lead fermions (the bath)
to obtain an effective spin action. In the present situation, this action represents the interaction
of the magnetic spin with a nonequilibrium environment. The tunnelling contribution to the
resulting spin action reads iδS = − 1

2

∮
C dt

∮
C dt ′〈TC KT (S(t), t)KT (S(t ′), t ′)〉, much in the

spirit of [15].
For brevity we introduce Aσ,σ ′ ≡ ∑

k,p c†
kσ cpσ ′ . The tunnelling Hamiltonian of a voltage

biased junction reads

KT (S(t)) = T̂σσ ′(t)Aσσ ′ exp(iφ) + H.c. (7)

For nonmagnetic normal metallic contacts such as those we are considering here, the correction
to the effective action for the spin dynamics is given by:

iδS = −i
∮

C
dt

∮

C
dt ′ T̂σσ ′(t)T̂σσ ′(t ′)Dc(t, t ′)ei(φ(t)−φ(t ′)), (8)

where Dc(t, t ′) ≡ −i〈TC Aσσ ′(t)A†
σσ ′(t ′)〉, which is spin independent.

We perform the standard Keldysh manipulations, defining upper and lower spin fields Su,l

residing on the forward/backward contours and reducing the time ordered integral over the
Keldysh contour to the integral over forward running time at the cost of making the Green’s
function G a 2×2 matrix. We then perform a rotation to the classical and quantum components

Scl ≡ (Su + Sl)/2, Sq ≡ Su − Sl, Scl · Sq = 0, (9)

which makes the matrix Green’s functions uniquely determined by the retarded (R), advanced
(A), and Keldysh (K) components DR(A)(t, t ′) = ∓iθ(±t ∓ t ′)〈[Aσσ ′(t), A†

σσ ′(t ′)]−〉 and
DK (t, t ′) = −i〈[Aσσ ′(t), A†

σσ ′(t ′)]+〉. The procedure leads to δS = δScl + Sq , where

δScl =
∫ ∫

dt dt ′[K12(t, t ′)Sq(t) · Scl(t ′) + Ksf(t, t ′)Sq
x (t)], (10)
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and

Sq =
∫ ∫

dt dt ′ K22(t, t ′)Sq(t) · Sq(t ′). (11)

By noting that the drift velocity of the electrons is determined by the voltage bias, the kernels
in equations (10) and (11) are given by, respectively,

K12(t, t ′) = −2T 2
1 [DR(t, t ′)ei(φ(t)−φ(t ′)) + D A(t ′, t)e−i(φ(t)−φ(t ′))]

= − 4T 2
1 θ(t − t ′)

∑

k,p

[ f (ξk) − f (ξp)]

× sin[(ξk − ξp)(t − t ′) + (φ(t) − φ(t ′))], (12)

Ksf(t, t ′) = −2T1T2[DR(t, t ′)ei(φ(t)−φ(t ′)) + D A(t ′, t)e−i(φ(t)−φ(t ′))]
= − 4T1T2θ(t − t ′)

∑

k,p

[ f (ξk) − f (ξp)]

× sin[(ξk − ξp)(t − t ′) + (φ(t) − φ(t ′))], (13)

and

K22(t, t ′) = −T 2
1 DK (t, t ′)ei(φ(t)−φ(t ′)) = iT 2

1

∑

k,p

[ f (ξk) + f (ξp) − 2 f (ξk) f (ξp)]

× ei[(ξk−ξp)(t−t ′)+(φ(t)−φ(t ′))]. (14)

To describe the dynamics of the spin properly, we employ the path integral representation
for the spin fields. In addition to the term − ∮

HS(t) dt , the action for a free spin also contains
a Wess–Zumino–Witten–Novikov (WZWN) term [16], i.e. SWZWN, which describes the Berry
phase accumulated by the spin as a result of motion of the spin on the sphere. We generalize
this action for nonequlibrium dynamics within the Keldysh contour formalism, which can be
expressed as [12]

SWZWN = 1

S

∫
dt Sq · (Scl × ∂t Scl). (15)

The total effective spin action is given by:

Seff = SWZWN + gμB

∫
dt B · Sq(t) + δScl + Sq . (16)

As seen from equations (13) and (14), the first three terms on the right-hand side of
equation (16) are real, which determine the quasi-classical equation of motion, while Sq is
imaginary, which stands for the fluctuations of the spin field Sq . This means that the quantum
effects have indeed been included even in the semi-classical approximation. We perform the
Hubbard–Stratonovich transformation with an auxiliary stochastic field ξ(t) to decouple the
quadratic term in Sq . The total effective action is rewritten as:

Scl = SWZWN + gμB

∫
dt[B + ξ (t)] · Sq(t) +

∫ ∫
dt dt ′[K12(t, t ′)Sq(t) · Scl(t ′)

+ Ksf(t, t ′)Sq
x (t)], (17)

where the fluctuating random magnetic field satisfies the correlation function

(gμB)2〈ξ(t)ξ(t ′)〉 = −2iK22(t, t ′). (18)

Here we have assumed that the fluctuations of the three component of the field are independent
and 〈ξi (t)ξi (t ′)〉 = 〈ξ(t)ξ(t ′)〉 with i = x, y, z.
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As the spin dynamics is much slower compared to electronic processes, we set Scl(t ′) 

Scl(t) + (t ′ − t)dScl/dt . The variational equations δScl/δSq(t) = 0 imply that

dn
dt

= α(t)n × dn
dt

+ gμBn × [Beff + ξ (t)], (19)

where henceforth we denote Scl by S = Sn. Here we find that the coefficient α(t) is given by

α(t) = 4T 2
1 N2

0

∑

nm

∫ D

−D

∫ D

−D
dE dE ′[ f (E) − f (E ′)]

× Jn(eVac/ω0)Jm(eVac/ω0) sin(m − n)ω0t

(E − E ′ + eVdc + mω0)2
, (20)

where N0 is the density of states at the Fermi energy of the conducting leads (we assume that
both leads are identical) and D is half of the bandwidth, and Jn is the nth Bessel function. At
zero temperature and small bias, equation (20) reduces to

α(t) = −8ST 2
1 N2

0 (ω0/D) sin(ω0t). (21)

From equation (20), it is evident that α approaches zero with increasing temperature. Therefore,
for a large band-width, the first term on the right-hand side of equation (19) drops out. This
result is different from the case of a dc-biased superconducting tunnel junction, where α(t) is
finite, leading to spin nutation [12]. The effective magnetic field is given by Beff = B + bsfx̂
with

gμBbsf = −4πT1T2 N2
0

∑

nm

Jn(eVac/ω0)Jm(eVac/ω0)[eVdc + nω0] sin ω0(n − m)t, (22)

where x̂ is the unit vector along the x-direction. Equation (19) is general in describing single-
spin dynamics. We now look into the damping effect due to the tunnelling electrons. From
equation (18), the power spectrum of the fluctuating magnetic field is given by χ̃(ω) =
2πT 2

1 N2
0

∑
n J 2

n (eVac/ω0)(ω + nω0 + eVdc) coth[(ω + nω0 + eVdc)/2T ]. For the ac case,
the fast oscillating part in time is irrelevant to the damping effect and has been dropped
out. At high temperatures, χ̃(ω) = 4πT T 2

1 N2
0 , which is frequency independent, i.e. the

time correlation is extremely short ranged. Under this circumstance, we can safely apply the
Redfield approach [17], and map the above Langevin equation to the Bloch equation:

dS
dt

= gμB[S × Beff] + S0 − S
T1

, (23)

where S0 = χ0Beff, with χ0 being the static magnetic susceptibility. Here we have also used
the fact that the longitudinal and transverse spin relaxation time [17]:

1

T1
= 1

T2
= 8πT T 2

1 N2
0 . (24)

In a weak coupling measurement, a reasonable value of T1 N0 is about 10−3. For a temperature
T ∼ 100 K, 1/T1(2) ∼ 10 MHz. At zero temperature, the quantum fluctuation dominates in
the dissipation. Therefore, equation (19) can be regarded as a quantum version of the Langevin
equation. In this limit, χ̃(ω) = 2πT 2

1 N2
0

∑
n J 2

n (eVac/ω0)|ω + nω0 + eVdc| is frequency
dependent, the Redfield approach is inapplicable and we are unable to arrive at a Bloch
equation. However, we can still estimate the spin relaxation rate to be 2πT 2

1 N2
0 (ωL + eVdc) for

the dc case, and 2πT 2
1 N2

0 (ωL +eVac) for the ac case. The crossover temperature to the quantum
regime is given by Tc ≈ (ωL, eVac, eVdc), below which frequency dependence of the relaxation
rate is expected. For a voltage bias of about 1 meV, the spin relaxation rate is about 104 Hz.
Therefore, in both limits, the spin relaxation rate is much smaller than the Larmor frequency
ωL ∼ 500 MHz for a magnetic field of 180 G.



9934 J-X Zhu and J Fransson

Figure 1. Schematic illustration of a tunnel junction in combination with MRFM: a magnetic
spin coupled to two conducting leads. The static magnetic field B polarizes the spin, while an ac
electric field generates an effective alternating magnetic field through the spin–flip transition during
the tunnelling process of conduction electrons. A micromagnet mounted on a nanomechanical
cantilever serves to couple the resonator to the single spin in the tunnelling junction.

Equations (19)–(24) consititute the central results of the paper. Several significant
consequences can be concluded: the spin–flip transition process in tunnelling converts the
electric field (i.e. voltage bias) into a magnetic field, which plays the role of an additional
torque on the spin. When a dc voltage bias (Vac = 0) is applied, the Larmor frequency of

the precessing spin will shift from ωL = gμB B to ω̃L = gμB

√
B2 + b2

sf. Interestingly, the
frequency shift away from the expected value was indeed observed by STM experiments [1].
Whether this is the effect of the spin–flip transitions remains to be seen. By taking T2 N0 ∼ 10−2

and eVdc = 1 meV, the effective magnetic field induced by the spin–flip transition will be of
the order of 10 G, which gives a frequency shift close to the experimental value. Our result
may provide a natural explanation for the observation. We also point out that the frequency
shift should still be observable for a low concentration of diluted spins because it is identical
for each individual spin. When an ac voltage bias (Vdc = 0) is applied, the system is analogous
to a spin in a static magnetic field plus an alternating magnetic field—a standard nuclear
magnetic resonance (NMR) or electron spin resonance (ESR) setup [17]. In conventional ESR
experiments, a number of 105 electrons is needed to generate a measurable electromotive force.
The measurement of a single-spin dynamics goes beyond the conventional ESR technique.
Here we propose a new experimental technique to monitor the single-spin dynamics. It has two
key elements, as shown in figure 1: a tunnel junction with a single electron spin embedded in
the tunnelling barrier. The static magnetic field polarizes the single spin, while the applied
ac electric field across the tunnel junction serves to tune the spin dynamics. Above the
tunnel junction is positioned an MRFM, which consists of a magnetic particle mounted on
a nanomechnical cantilever. The magnetic particle is coupled to the single spin through a
magnetic force [18]:

F(r, t) = −[me(t) ·∇]B(r), (25)
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where r is the distance between the micromagnet and the single spin, me(t) = gμBS(t) is
the magnetic moment of the single spin, and the total magnetic field B consists of the external
magnetic field H and the magnetic field Ht(r) generated by the micromagnet mounted on the
mechanical cantilever. By assuming that |∂ H z

t /∂z| = 104 G μm−1 and that the single spin is a
localized electron, we estimate that the force signal will be 10 aN. For a mechanical cantilever
with a force sensitivity Fn ∼ 100 zN, a bandwidth of the order of 104 Hz, which might be
determined by the intrinsic frequency of the cantilever, is important for single-electron spin
detection by MRFM. In view of the progressing improvement in the MRFM technique, a test
for our results is within experimental reach. The direct observation of the magnetic resonance
signal from a single spin, in the absence of an externally applied alternating magnetic field,
will provide strong evidence of spin–flip transitions across the tunnelling junction, which will
be very helpful in understanding the mechanism for the tunnelling current modulation observed
in STM [1–3].

We have studied the back-action effect of tunnelling current on the single-spin dynamics.
The spin–flip transition in the tunnelling process of conduction electrons generates an effective
magnetic field, which manipulates the motion of the single spin. In addition, we have
considered the dissipation effect of the tunnelling electrons, which naturally leads to a Bloch
equation at high temperatures, while in the opposite limit the relaxation rate depends on the
combination of the Larmor frequency and the applied voltage bias. Our conclusion can also
be applied to a magnetic cluster for which a single spin operator can still be defined if the
constituent spins have strong magnetic correlation.
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